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1. Executive Summary

R The purpose of this effort is to develop parallel processing techniques for real-time speech recognition. This
is part of an overall program to demonstrate the utility and effectiveness of high performance speech recognition for

natural human-machine interaction.

This report descnbes our work during the first phase (Item 0001) of this contract. In this phase. we have
developed parallel processing techniques appropriate for real-time speech recognition and demonstrated the

teasibility of achieving real-time recognition on the BBN Burterfly™ Parallel Processor.

The speech recogrution algorithm that is the focus of this effort is being developed for the BBN Byblos speech

recognition system. The multiprocessor used in the research, the BBN Butterfly Parallel Processor, is a shared

memory, MIMD machine. The algorithm was implemented using the Uniform System software methodology. a

) system that simplifies parallel programming without sacrificing efficiency. The algorithm is descnbed, highlighung
those poruions cnitical to an efficient parallel implementation. Some of the problems encountered in trying to

improve the efficiency are presented as well as the solutions to those problems. The algonthm is shown to achieve

79% processor utilization on a 97-node Buttertly Parallel Processor. This is equivalent to a speedup by a factor of

77 over a single processor benchmark.

We are beginning the second phase (Item 0002) of the effort, during which we will develop and demonstrate a
real-time speech recognition capability within the Strategic Computing Program (SCP) Naval Battle Management
application domain. We are extending and refining the parallel processing techniques developed in the first phase of
this effort. These techniques will be applied to the implementation of a system for real-time large vocabulary
continuous speech recognition. The vocabulary and grammar to be implemented and demonstrated will be a subset
of the FRESH/CASES expert systems. The real-time system will be implemented on a BBN Butterfly Parallel

Processor.
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2. Efficient Implementation of Continuous Speech Recognition on a
Large Scale Parallel Processor

The body of this section is a paper that will be presented at the IEEE Intemational Conference on Acoustics,
Speech, and Signal Processing, to be held in Dallas, TX on April 6-9, 1987. This paper describes the major
technical achuievements of this project in a concise format that is most appropriate for dissemination of the results to
technical personnel of the Government. contractors, and other research laboratories. When published. the citation
will be:

Kimball, Owen, Lynn Cosell, Richard Schwartz, and Michael Krasner. "Efficient Implementation of

Continuous Speech Recognition on a Large Scale Parallel Processor”, Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing, Apnl 6-9, 1987, Dallas, TX.
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Efficient Implementation of Continuous Speech Recognition
on a Large Scale Parallel Processor

Owen Kimball, Lynn Cosell,
Richard Schwartz, Michael Krasner

BBN Laboratories
10 Moulton St.
Cambridge, MA 02238

Abstract

This paper presents research into the use of large-scale
parallelism for a continuous speech recognition algorithm. The
algorithm, developed for the BBN Byblos system [l], uses
context dependent Hidden-Markov models to achieve high
recognition accuracy. The multiprocessor used in the research,
the BBN Butterfly M Parallel Processor, is a shared memory,
MIMD machine. The algorithm was implemented using the
Uniform System software methodology, a system that
simplifies parallel programming without sacrificing efficiency.
The algorithm is described, highlighting those portions critical
to an efficient parallel implementation. Some of the problems
encountered in trying to improve efficiency are presented as
well as the solutions to those problems. The algorithm is
shown to achieve 79% processor utilization on a 97-node
Burterfly Parailel Processor. This is equivalent to a speedup by
a factor of 77 over a single processor benchmark.

1. Introduction

The introduction ‘of large-scale parallelism in computers
offers the potential for greatly increased speed and better
performance-cost ratios for algorithms that can make use of
this parallelism. This paper describes the parallel
implementation of a continuous-speech recognition algorithm
that successfully uses the speedup provided by a general
purpose multiprocessor, the Butterfly Parailel Processor.

The outline of this paper is as follows: Section 2
describes the Butterfly Parallel Processor and the Uniform
System, Section 3 describes the BBN word recognition
algorithm, Section 4 explains the initial parallel
implementation of the algorithm, Section 5 describes the
improvements to the algorithm for better processor utilization
and presents results based on these improvements. The final
section presents some conclusions from the work.

2. Butterfly and Uniform System
The Butterfly Parallel Processor {2] is composed of

multiple (up to 256) identical nodes, each containing a
processor and memory, interconnected by a high-performance

'"This work was sponsored by the Defense Advanced Research Projects
Agency and was morutored by the Space and Naval Warfare Systems
Command under Contract No. N00039-85.C-0313.

The authors would like to thank William Crowther for his assistance on the
binary-tree maximum and for other informauve discussions.
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switch. The Butterfly architecture is multiple-instruction-
multiple-data-stream (MIMD), in which each processor node
executes its own sequence of instructions, referencing data as
specified by the instructions. Each processor node contains
either a Motorola MC68000 or MC68020 microprocessor, an
optional floating-point co-processor, from 1 to 4 megabytes of
main memory, a co-processor called the Processor Node
Controller, memory management hardware, an [-O bus, and an
interface to the Butterfly switch.

The Butterfly switch allows each processor to access the
memory on every other node. Collectively, these memories
form the shared memory of the machine, a single address space
accessible to every processor. All  interprocessor
communication is performed using shared memory.
Instructions accessing memory on the same node as a processor
typically take about 2 microseconds to complete, whereas those
accessing memory on another node take about 5 or 6
microseconds. Block transfers from one memory to another
run at 4 megabytes per second. The machines used in this
project were 16-processor and 97-processor machines, each
with 1 megabyte of memory and a MC68000 microprocessor
on the processor nodes. Neither had hardware support for
floating point arithmetic.

The software for the project was written using the
Uniform System, a programming methodology supported by a
library of high-level subroutines [3]. The benefit of using the
Uniform System is that it can provide a simple, efficient
solution to the problem of load balancing for the memory as
well as for the processors. To balance the load on memory, the
Uniform System routines spread out the data evenly across the
different physical memories in the machine. Under the
assumption that distributed data will also distribute memory
accesses fairly evenly, this approach can reduce the
inefficiency that results when many processors attempt to
access the same memory simultaneously.

To balance the load on processors, the Uniform System
treats processors as a pool of identical workers, all of which
can execute the same tasks. In this way, tasks can be
dynamically assigned to the free processors in the machine. In
a typical program, control starts out in a single processor of the
machine. To perform tasks in parallel, this processor calls a
Uniform System “generator” subroutine, specifying a set of
tasks to do and a task subroutine. The generator creates a
descriptor of the work to be done and starts all processors. The
processors then perform the work in parailel, each taking the
next task data from the descriptor and executing the task
routine with this data until all the work is completed. At that
point, control is retumed to the original single processor. An
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The call

example of a simple generator is GenOnl.
"GenOnl(task_routine, Ntasks)" assigns processors to perform

the subroutine “task_routine” for every integer value in the
range 1 to Ntasks.

3. Recognition Algorithm

The Byblos system has two major components, a trainer
and a recognizer. The recognition component was
implemented on the Butterfly Parallel Processor. The training
component uses the forward-backward algorithm (4] to
estimate discrete-density Hidden-Markov models of context-
dependent phonemes. It combines these models to form word
models that are used in recognition. The context-dependent
models lead to accurate and robust recognition performance;
the system has achieved 90% correct recognition on a 335
word speaker-dependent task with no grammar [5}].

In the recognition process, input speech is analyzed every
10 ms and then vector quantized with a 256-vector codebook.
The analysis and quantization are done in real time on an FPS
array processor attached to a VAX. The quantization codes,
each representing a frame of input speech, are input in real
time over an ethernet connection to the search algorithm on the
Butterfly Parallel Processor

The search algorithm finds the best scoring sequence of
words using the trained word models. Each possible sequence
of words that is considered is called a word sequence theory.
The search uses the Viterbi decoding algorthm to update
scores for all word sequence theories at each frame. In order to
prevent underflow during score updating, all theory scores are
normalized. To determine the "normalization factor” for a
frame, the algorithm computes the maximum score of all states
in all words in the frame and sets the factor to the score ceiling
minus the maximum score.

The major work being performed in the algorithm can be
abstracted in pseudo-code as follows:
FOR all input frames {
max_score ;=0
best_end_score := 0
FOR all words {
update word scove
IF word_max_score > max_score
max_score := word_max_score
IF word_end_score > best_cnd_score
best_end_score := word_end_score

}

determine initial state score for new theories from best_end_score
determine normalizaton from max_score

}

determine and report best scoring theory

The algorithm computes two maxima: “max_score”, the
maximum over all states of the words scored in an input frame,
and "best_end_score”, the maximum score of all words’ final
states. The first maximum is used for the normalization factor
mentioned above, and the second is used to determine the score
for the initial state of all words in the next frame.

The core of this computation, the word score update,
entails updating all the phonemes in a word. Each phoneme
update requires a litde less than one millisecond of
computation, and the average word update time is slightly
more than 4 milliseconds for the vocabularies used in this
work.

4. Initial Parallel Implementation

As the first step toward a parallel implementation, the
speech recognition program was ported from VAX/VMS to a
single proce<sor of the Butterfly Parallel Processor. Both
versions of the program were in the language 'C’. The most
significant change to the program in this phase was the use of
the Uniform System memory management routines to store in
global shared memory about 1.5 megabytes of data that had
been stored on disk in the VAX version.

The VAX (and the first Butterfly System implementation)
used ﬂoa!ing point arithmetic, but because floating-point
arithmetic is performed in software in our Butterfly Parallel
Processor, it is substantially slower than fixed point. For this
reason, the program was switched to fixed-point arithmetic. As
part of this change, multipiication of probabilities in the
original version was converted to addition of corresponding {og
probabilities. With this modification, the execution time was
about two minutes for a 3.5 second utterance from a 120 word
task. This is about the same speed as our optumzcd floating

. point VAX 11/780 program
Examination of thc pseudo-code in the preceding section
leads to a natural decomposition of the algorithm: the
fundamental parallel task is to update the score of a single
word for a single input frame. Using the Uniform system
generator GenOnl, the pseudo-code for the parallel version of
our algorithm becomes:
FOR ail frames {
best_end_score := 0
max_score := 0
GenOnl(update_word, N_words)
determine initial state score for new theories from best_end_score
determine normalizaton from max_score

}

determine and report best scoring theory

In this version, the subroutine update_word now includes
the calculation of max_score and best_end_score. Note that
since the processor calling GenOnl waits for all processors to
finish before proceeding, this mechanism provides a
synchronization that is needed to ensure that no processor
begins updating words of a new frame until the initial state
score and the normalization factor for the next frame have been
computed.

Using this simple approach to parailel implementation, a
first timing experiment was conducted using a 16-processor
machine and a 120-word vocabulary task. Processor utilization
was found to be 75%, i.e. the machine was effectively using
the computation corresponding to 12 of the 16 actual
processors. [6]. This result was judged to be good enough to
proceed directly to work on a larger machine. The first time
the program was run on a 97-processor machine, processor
utilization was approximately 20%. Although this represents a
factor of 20 speedup of the program, it is an inefficient use of
the machine. The next section presents several factors that
contributed to the inefficiency as well as the methods used to
improve them.
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5. Efficiency Improvements and Results

There are a number of potential obstacles to attaining
efficient processor utilization on a multiprocessor. Typical
issues include contention for a common memory location,
serial code in the program, and processors waiting idly to
synchronize with other processors. Each of the speciﬁc
problems described below includes one or more of these issues.

Number of Tasks and Startup Overhead

Even before the program was run on a larger machine, we
had anticipated that it would be hard to obtain high processor
utilization with a vocabulary as small as 120 words. Since our
long-term goal is to recognize speech from large vocabularies,
we switched to a larger task of 335 words. This change
improved processor utilization to 35% on the 97-processor
machine.

The speed of processor scheduling was examined next. In
the initial parallel version shown above, the generator
subroutine call starts all the processors at each frame. It was
found that the overhead of starting up was relatively large for
the amount of work being done 1t each frame. To reduce the
overhead, the program was altered to start all processors only
once at utterance start, generating NframesxNWords tasks at
that point and letting each .processor determine its word and
frame indices from the single task index it receives from the
generator. Processor utilization improved to about 50% with
this change.

Processor Synchronization [ssues

The task generation change had removed the
synchronization provided by starting up a new generator at
each frame. To replace this, an explicit synchronization was
built into the program to be performed after all the words in a
frame were processed. There were two subsequent changes to
improve the efficiency of synchronization. The first dealt with
task ordering. In the early versions of the algorithm,

processors updated all the words in the vocabulary, with no ~

particular ordering of the words. Since words have varying
numbers of phonemes (from one to 14 phonemes in this task’s
vocabulary), different words took different amounts of time to
update. If a processor began work on a long word near the end
of the work for a frame, other processors would finish their
assigned words and wait idly to synchronize with the one busy
processor. To reduce this inefficiency, the words were
processed in order from longest to shortest (in number of
phonemes).

In figure 1, we schematically depict the siwation before
and after the words are ordered. The fiiled rectangles represent
time when processors actively work on tasks and the white
space represents tune between tasks when no work is being
accomplished. In the right hand part of the figure, idle
processor time is substantially reduced by sorting.

The second change to synchronization efficiency
concemed the point in the program at which synchronization
was done. As mentioned, the purpose of the synchronization
was to ensure that no processor proceeded to the next frame
until the starting score for words and the normalization factor
were computed. Since rhe normmalization factor was only to
aveid score underflow, it could be estimated a frame or more
earlier. The only remaining synchronization constraint was the
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word-starting score. This score, however, is used only at the
beginning of the first phoneme of each word. Considering this,
the order of the update of a word was reversed so that the last
phoneme was updated first, and the first phoneme updated last.

Proc % Time Time
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777
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Synch Point
Sorted by length

Y
)

Synch Point
Unsorted Words

Figure I: Ordering Tasks by Length

This change allowed a processor to finish work on one frame
and immediately begin work on updating a word from the next
frame, synchronizing only when it got to the first phoneme. In
this way, time that had been previously spent by processors
waiting for others to finish a frame was now being used to
perform useful work from the next frame.

Figure 2 depicts the situation for two frames of an
utterance before and after this change. Tasks for time T+1 are
shown in two shades. The darker portion represents the part of
the task that depends on the previous frame's work being
finished. On the right, with the the order of the computation
reversed, the idle processor time is reduced. The effect of the
synchronization changes was to increase processor utilization
to approximately 72%.

WD

Synch Point

Original Order Computation Reversed

wave 4[]

U
Word at
Time T T+1 Depeads on T

Figure 2: Reversing Word Computation Order
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Finding Global Maximum

Finally, the efficiency of finding the maximum value was
also improved. A straightforward computation of the
maximum value requires that all values be compared with a
single memory location, but this approach results in contention
for that location. As a first Umprovement. the program was
altered to make each prc-essor maintain its own local
maximum of the scores of all the words that it updates in a
frame. At the end of the frame, the global maximum of these
values over all processors was determined. In initial versions,
this was accomplished by having processors sequentially
compare their value to the giobal location and replace it if
necessary. Although on a sixteen processor machine, the time
for processors to rum in values in this way is negligible, with
97 processors, the inefficiency of the approach becomes
noticeable.

An altemative to this approach was to set up a "binary
tree” of locations for taking the maximum. In this approach,
the processors’ local maxima are the leaves of the tree and the
maxtma are propagated up through the nodes of the tree. This
approach reduces the asymptotic time for finding a global
maximum from O(N) to O(log N), where N is the number of
processors. More importantly in our case, efficiency improved
because memory contention was reduced.

The total effect of ail the improvements described above
was to improve processor utilization on a 97-processor
machine from 20% to 79%. Figure 3 is a graph of processor
utlization for 1 to 97 processors on the 335 word task. The
actual speed of the speech recognition improved accordingly.
After the optimizations are included, a one-processor Buttertly
Parallel Processor requires 128 times real time (128 seconds to
process one second of input speech) and a 97-processor
machine requires about 1.7 times real time.

80

80
NUMBER
EFFECTIVE
PROCESSORS

40

9 20 40 50 80 100
NUMBER of PROCESSORS

Figure 3: Buttertly Processar Utilization, 335 words

6. Coaclusions

This work has shown that the Butterfly architecture is
suitable for continuous speech word recognition.  The
algorithm was implemented efficiently without ch:mging thc
type or amount of computation performed. Some ingenuity
was required to obtain an efficient realization, but once the
obstacles were understood. solutions presented themselves
fairly readily. The memory and processor management
functions of the Uniform System made initial parallelization of
the algorithm quite easy and provided several alternatives for
improving impiementation efficiency when required.

We draw several broad conclusions about efficient
parallel programming as well. Most obviously. and perhaps
most importantdy, it is crucial that sequentially executed code
be elimmnated wherever possible. Similarly, much of the
inefficiency in our original multiprocessor program was due to
processors waiting for each other. Synchronizing processors
only after all other possibie work is done was found to be a
good strategy to avoid this. Additionally, it can be very
important to minimize the overhead of parallel constructs such
as starting processors.
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